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Transverse instability of surface solitary waves.
Part 2. Numerical linear stability analysis
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In a previous work, Kataoka & Tsutahara (J. Fluid Mech., vol. 512, 2004a, p. 211)
proved the existence of longitudinally stable but transversely unstable surface solitary
waves by asymptotic analysis for disturbances of small transverse wavenumber. In
the present paper, the same transverse instability is examined numerically for the
whole range of solitary-wave amplitudes and transverse wavenumbers of disturbances.
Numerical results show that eigenvalues and eigenfunctions of growing disturbance
modes agree well with those obtained by the asymptotic analysis if the transverse
wavenumber of the disturbance is small. As the transverse wavenumber increases,
however, the growth rate of the disturbance, which is an increasing function for small
wavenumbers, reaches a maximum and finally falls to zero at some finite wavenumber.
Thus, there is a high-wavenumber cutoff to the transverse instability. For higher
amplitude, solitary waves become longitudinally unstable, and the dependence of the
eigenvalues on the transverse wavenumber exhibits various complicated patterns. We
found that such eigenvalues versus transverse wavenumber can be simply grouped
into three basic classes.

1. Introduction
In a system under uniform gravitational acceleration, surface solitary waves

propagate on a free surface of fluid of finite depth. Their surface profile is represented
by a single hump of elevation with a straight crest, and their properties were
first calculated numerically by Byatt-Smith & Longuet-Higgins (1976) and later
by Tanaka (1986) and Longuet-Higgins & Tanaka (1997) on the basis of the Euler
set of equations. The wave speed, energy, etc. were obtained as functions of the
wave amplitude h, which is defined as the ratio of the maximum surface elevation
to average depth of the fluid. Wave properties result in oscillations with rapidly
decreasing period as h approaches the limiting value 0.83322 (Longuet-Higgins &
Fox 1996). Here we are interested in the linear stability of surface solitary waves
to three-dimensional disturbances (so-called transverse stability). Before mentioning
the aims of the present study, let us briefly outline previous work on the stability of
surface solitary waves.

Jeffrey & Kakutani (1970) and Benjamin (1972) made linear stability analyses of
small-amplitude solitary waves. They investigated the stability to two-dimensional
disturbances that have no dependence on the transverse direction (so-called
longitudinal stability). The celebrated Korteweg–de Vries (KdV) equation was used
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as a basic equation, and it was found that small-amplitude solitary waves are
longitudinally stable. Study of transverse stability was initiated by Kadomtsev &
Petviashvili (1970). They derived the Kadomtsev–Petviashvili (KP) equation, which is
a three-dimensional extension of the KdV equation, and on the basis of this equation,
made a linear stability analysis with respect to three-dimensional disturbances (see
also Zakharov 1975; Kuznetsov, Spector & Fal’Kovich 1984; Alexander, Pego &
Sachs 1997; Allen & Rowlands 1997; Kivshar & Pelinovsky 2000). It was revealed
that small-amplitude solitary waves without surface-tension effects are stable not only
longitudinally but also transversely.

The stability of finite-amplitude surface solitary waves was first examined by
Tanaka (1986). He investigated numerically the linear stability to two-dimensional
disturbances (longitudinal stability), and found that an exchange of longitudinal
stability occurs at h =0.7807. This wave amplitude corresponds to the first extremum
in the energy of the solitary wave. Tanaka et al. (1987) also simulated the time
development of an unstable solitary wave. The time evolution is largely dependent
on the sign of a growing disturbance mode added to the solitary wave. In one case, it
leads to wave breaking; in the other case, it undergoes a transition to a lower solitary
wave having almost the same energy. Longuet-Higgins & Tanaka (1997) carried out
a detailed linear stability analysis and showed numerically that a second exchange
of stabilities occurs at the second extremum in the energy of the solitary wave. An
analytical proof was finally given by Kataoka (2006a) that the exchange of stabilities
occurs at every extremum in the wave energy, as in the case of surface periodic waves
(Saffman 1985; Kataoka 2006b). In this way, the longitudinal stability of surface
solitary waves has been elucidated so far.

On the other hand, it was only recently that the study of transverse stability of
finite-amplitude surface solitary waves began. Bridges (2001) examined the transverse
stability analytically in the case of long-wavelength transverse disturbances. His
analysis is, however, based on the leading-order effects of small wavenumbers only,
and could not find any transverse instability for h < 0.7807. The higher-order effects
of the small transverse wavenumbers were appropriately taken into account later by
Kataoka & Tsutahara (2004a) using a systematic asymptotic analysis for disturbances
of small transverse wavenumber, and it was revealed that there exist longitudinally
stable but transversely unstable surface solitary waves for 0.7133 < h < 0.7807. Their
analysis is based on the full Euler set of equations. The only assumption is that
the transverse wavenumber of the disturbance should be small. It is thus desired to
examine how this transverse instability changes as the transverse wavenumber of the
disturbance becomes larger.

In the present study, therefore, we have carried out a numerical linear stability
analysis of finite-amplitude surface solitary waves on the basis of the three-dimensional
full Euler set of equations. We clarified the transverse stability not only for the
longitudinally stable range h < 0.7807 but also for the whole range of solitary-
wave amplitudes and transverse wavenumbers of the disturbances. To the best of our
knowledge, this is the first study to examine the transverse stability of finite-amplitude
surface solitary waves numerically (see McLean 1982a, b for the case of surface
periodic waves). The numerical method is based on a boundary-element method
which utilizes Green’s function of the modified Helmholtz equation. Numerical results
show that, if the transverse wavenumber of the disturbance is small, eigenvalues
and eigenfunctions of growing disturbance modes agree well with those obtained
by the asymptotic analysis for small transverse wavenumbers of disturbances. As
the transverse wavenumber increases, however, there is a high-wavenumber cutoff
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to the transverse instability. This means that transversely unstable solitary waves
are stable to a disturbance of wavenumber higher than some critical value. For the
longitudinally unstable solitary waves (h > 0.7807), eigenvalues of growing disturbance
modes depend on their transverse wavenumbers in various complicated ways. We
arrange their patterns into three basic classes in terms of the signs of two parameters
of the solitary wave, and further into six by distinguishing three marginal classes that
occur in a limited range of wave amplitudes.

The outline of this paper is as follows. We formulate the basic equations in § 2,
where the problem of stability is reduced to a linear eigenvalue problem. The numerical
method is described in § 3. Numerical results on eigenvalues and eigenfunctions (or
surface profiles of growing disturbance modes) are presented in §§ 4 and 5, respectively,
and concluding remarks follow in § 6. The asymptotic solution obtained by Kataoka &
Tsutahara (2004a) and Kataoka (2008) is valid for broad ranges but does not give
good approximation in the special cases where the energy or the wave speed of the
solitary wave is near its extremum. We present asymptotic solutions valid only for
these cases in Appendices A and B.

2. Formulation
Consider irrotational motion of an incompressible ideal fluid of undisturbed depth

D with a free surface under uniform gravitational acceleration g. The effects of
surface tension are neglected. In what follows, all variables are non-dimensionalized
using g and D. Let x, y and z be the Cartesian coordinates, with the z-axis pointing
vertically upwards and their origin being placed on an undisturbed free surface. The
fluid motion is governed by

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 for − 1 < z < η, (2.1)

with boundary conditions

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y
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∂y
=

∂φ

∂z
at z = η, (2.2)

∂φ
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[(
∂φ
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)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
]

+ η = b(t) at z = η, (2.3)

∂φ

∂z
= 0 at z = −1, (2.4)

where t is time, φ(x, y, z, t) is the velocity potential, η(x, y, t) is the surface elevation
and b(t) is a function of t which is determined by evaluating (2.3) as x → ∞.

We first consider a solution of (2.1)–(2.4) that is independent of t and y:

φ = −vx + Φs(x, z), η = ηs(x), (2.5a, b)

where v is a positive real parameter, and ∂Φs/∂x, ∂Φs/∂z and ηs decay as x → ±∞.
The solution (2.5) represents a steady propagation of a two-dimensional localized
wave against a uniform stream of constant velocity −v in the x direction. We call this
solution a solitary wave solution. The existence of this solution has been numerically
confirmed for 1 <v < 1.2942 (Byatt-Smith & Longuet-Higgins 1976; Tanaka 1986;
Longuet-Higgins & Tanaka 1997). In terms of the maximum surface elevation

h = max(ηs), (2.6)
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the range of existence is 0 <h< 0.83322. Depending on the situation, we use either
v or h as an independent parameter to characterize the solitary wave. The solitary
wave solution has the property that the surface elevation ηs (>0) possesses a single
point of extremum which is called the crest. Moreover, the solution is symmetric with
respect to its crest, that is, Φs(x, z) − Φs(0, z) is odd and ηs(x) is even in x with the
origin x = 0 being placed on the crest, and the decay of ∂Φs/∂x, ∂Φs/∂z and ηs as
x → ±∞ is exponentially fast (some of these properties were rigorously proved by
Amick & Toland 1981 and Craig & Sternberg 1988).

Now we make a linear stability analysis of the solitary wave on the basis of
(2.1)–(2.4). The following form is assumed for the solution of (2.1)–(2.4):

φ = −vx + Φs + φ̂(x, z) exp(λt + iεy), (2.7a)

η = ηs + η̂(x) exp(λt + iεy), (2.7b)

where ε is a given non-negative constant, and λ is an unknown complex constant.
Substituting (2.7) into (2.1)–(2.4), linearizing with respect to (φ̂, η̂), and imposing
decaying conditions for φ̂ and η̂ as x → ±∞, we obtain the following set of equations
for (φ̂, η̂):

∂2φ̂

∂x2
+

∂2φ̂

∂z2
= ε2φ̂ for − 1 < z < ηs, (2.8)

LK [φ̂, η̂] = −λη̂ at z = ηs, (2.9)

LD[φ̂, η̂] = −λφ̂ at z = ηs, (2.10)

∂φ̂

∂z
= 0 at z = −1, (2.11)

φ̂(x, z) → 0, η̂(x) → 0 as x → ±∞, (2.12)

where LK and LD are linear operators defined by
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+
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+
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]
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(2.13b)

Equations (2.8)–(2.12) constitute an eigenvalue problem for (φ̂, η̂), whose eigenvalue
is λ. When this problem possesses a solution for which λ has a positive real part, the
solitary wave is linearly unstable to a disturbance of transverse wavenumber ε. In
prior studies, the longitudinal stability, or the stability with respect to disturbances
that have no dependence on y (ε = 0), was examined numerically by Tanaka (1986)
and Longuet-Higgins & Tanaka (1997). According to them, surface solitary waves
are longitudinally stable if

h < 0.7807, (2.14)

where h is defined by (2.6). This critical amplitude h =0.7807 corresponds to the first
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Figure 1. Energy E versus wave speed v of the solitary wave as the wave amplitude h
increases: (a) whole view; (b) enlarged view at the higher-amplitude end of (a); (c) further
enlarged view at the higher-amplitude end of (b). The dotted line represents the range of
dE/dv > 0 and Q > 0, the thin solid line that of dE/dv > 0 and Q < 0, and the thick solid line
that of dE/dv < 0 (always Q < 0). The crosses, the circles and the short horizontal lines denote
the points of dE/dv = 0, Q = 0 and dv/dh = 0, respectively, for which the corresponding wave
amplitudes h are shown in the figure.

extremum in the energy E of the solitary wave defined by

E =
1

2

∫ ∞

−∞

{∫ ηs

−1

[(
∂Φs

∂x

)2

+

(
∂Φs

∂z

)2
]

dz + η2
s

}
dx. (2.15)

It was then proved by Kataoka (2006a) that an exchange of longitudinal stabilities
occurs at every extremum in E. The profile of E is shown as a function of v in figure 1.
The points of extrema in E are denoted by the crosses and the corresponding
wave amplitudes by h = 0.7807, 0.83028, 0.83305, . . . in figure 1. The number of
unstable modes increases by one after passing through each cross along the solution
branch in the direction of increasing h. Thus, the solitary wave is unstable to a
single longitudinal mode for 0.7807 <h< 0.83028, and two modes for 0.83028 <h<

0.83305.
As for the transverse stability, or the stability to disturbances that depend not only

on the x and z directions but also on the y direction (ε > 0), Kataoka & Tsutahara
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(2004a) and Kataoka (2008) performed an asymptotic analysis of (2.8)–(2.12) for
small ε and obtained the following solution of the eigenvalues having non-zero real
part:

λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

±
(

ε

√
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)
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dE

dv
< 0 (always Q < 0), (2.16a)

±ε2Q ± iε

√
vE

dE/dv
for

dE

dv
> 0 and Q < 0, (2.16b)

no eigenvalue having non-zero real part for
dE

dv
> 0 and Q > 0, (2.16c)
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in which M and T represent, respectively, the mass and the kinetic energy of the
solitary wave. The above result (2.16) for λ leads to the following sufficient condition
for the transverse instability:

Q < 0. (2.19)

The range of Q < 0 is shown in figure 1 by (either thin or thick) solid lines whose
end points are denoted by circles. However, the above eigenvalues (2.16), which lead
to (2.19), are valid only for small ε. Thus, in the present study, we will clarify the
transverse stability of surface solitary waves for the whole range of ε by solving the
eigenvalue problem (2.8)–(2.12) numerically. The numerical method is described in
§ 3, and the results in §§ 4 and 5.

3. Numerical method
Solitary wave solutions (Φs, ηs) are computed numerically by the method described

in Turner & Vanden-Broeck (1988). This method was originally devised for computing
interfacial solitary waves in a two-layer fluid. Surface solitary wave solutions are
obtained simply by setting the density of the upper fluid to zero – the reader is
referred to that paper for details of the numerical method. Convergence of the
computed results is so fast that the surface elevation ηs converges up to O(10−7) or
more on a pointwise basis.

Computation of the eigenvalue problem (2.8)–(2.12) is carried out in the following
way. First we introduce Green’s function G of the modified Helmholtz equation which
satisfies (∂2/∂x2 + ∂2/∂z2 − ε2)G = −2πδ(x − x ′, z − z′) (δ is Dirac’s delta function)
and an impermeable boundary condition ∂G/∂z = 0 at the bottom z = −1, i.e.

G(x, z, x ′, z′) = K0(εr) + K0(εr̄), (3.1)

where K0 is the modified Bessel function of the second kind of order zero and

r =
√

(x − x ′)2 + (z − z′)2, r̄ =
√

(x − x ′)2 + (z + z′ + 2)2. (3.2)
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Let φ̂(x, z) be defined by

φ̂(x, z) =

∫ ∞

−∞
σ (s ′)G(x, z, x ′(s ′), z′(s ′)) ds ′, (3.3)

where s is the arc length along the surface z = ηs of the solitary wave measured from
the crest at x = 0, σ (s) is an unknown function of s, and (x(s), z(s)) is the space
coordinate on the surface of the solitary wave. The spatial derivatives of φ̂ along the
surface and normal to it evaluated on the surface (x, z) = (x(s), z(s)) are expressed as

∂φ̂

∂s
= PV

∫ ∞

−∞
σ (s ′)

∂G

∂s
ds ′,

∂φ̂

∂n
= πσ +

∫ ∞

−∞
σ (s ′)

∂G

∂n
ds ′, (3.4a, b)

where PV denotes principal value, and n is the normal to the surface, pointing out
of the fluid. The eigenvalue problem (2.8)–(2.12) for φ̂(x, z) and η̂(x) then reduces
to that of integro-differential equations for η̂(s) and σ (s) evaluated on the surface
(x, z) = (x(s), z(s)):

λη̂ =
1

cos θ

[
πσ +

∫ ∞

−∞
σ (s ′)

∂G

∂n
ds ′ +

d(q cos θη̂)

ds

]
, (3.5)

λ

∫ ∞

−∞
σ (s ′)Gds ′ = q × PV

∫ ∞

−∞
σ (s ′)

∂G

∂s
ds ′ −

[
q

d(q sin θ)

ds
+ 1

]
η̂, (3.6)

with boundary conditions

η̂(s) → 0, σ (s) → 0 as s → ±∞, (3.7)

where q(s) and θ(s) are, respectively, the flow speed of the solitary wave on the
surface (x, z) = (x(s), z(s)) and the angle between the s-axis and x-axis, i.e.

q(s) =

[(
−v +

∂Φs

∂x

)2

+

(
∂Φs

∂z

)2
]1/2

(x,z)=(x(s),z(s))

, θ(s) = arctan

(
dηs

dx

)
. (3.8a, b)

To solve the eigenvalue problem (3.5)–(3.7) numerically, we employ the following new
independent variable γ :

s(γ ) = ∆minγ + (∆max − ∆min)

∫ γ

0

tanh8

(
∆maxγ ′

L

)
dγ ′, (3.9)

where ∆min , ∆max (>∆min) and L are positive constants. The 2N + 1 discrete mesh
points are distributed at γi = i/N (i = −N, −N +1, . . . , N). Introduction of the above
coordinate γ enables us to concentrate these mesh points towards the origin s = 0
with a minimum width ∆min/N , while they are distributed almost equally with a
moderate width ∆max/N in the far field. Thus, we can capture both a steep variation
of the solution near the solitary-wave crest and a moderate variation in the far field
with high accuracy by choosing ∆min and ∆max appropriately.

The two integrals PV
∫ ∞

−∞ σ (s ′)∂G/∂s ds ′ and
∫ ∞

−∞ σ (s ′)G ds ′ in (3.6) contain an
inverse-first-power singularity and a logarithmic singularity, respectively. To calculate
these integrals, we introduce a new set of mesh points γi−1/2 = (i −1/2)/N . The former
integral is calculated by the usual trapezoidal rule by evaluating the variables with s

and those with s ′ at different sets of mesh points γi−1/2 and γi , respectively. The latter

integral is first divided into a singular part −
∫ s(γi+1)

s(γi−2)
σ (s ′) ln |s ′ − s(γi−1/2)|ds ′ and the

remaining non-singular part, and σ (s ′) in the singular part is approximated by a cubic



Transverse instability of surface solitary waves. Part 2 133

–500 –400 –300 –200 –100 0 100
–1

0

1

2

φ̂

η̂

–500 –400 –300 –200 –100 0 100
x

–1

0

1

(a)

(b)

Figure 2. Eigenfunctions (φ̂, η̂) of a growing disturbance mode for (h, ε) = (0.76, 0.15). The
thick and thin solid lines represent the real and imaginary parts, respectively, under the
normalization (5.1).

function of s ′ as

σ (s ′) = a3s
′3 + a2s

′2 + a1s
′ + a0, (3.10)

where the coefficients a0, a1, a2 and a3 are determined by evaluation of
(3.10) at four discrete mesh points s ′ = s(γi−2), s(γi−1), s(γi) and s(γi+1).
The non-singular part is computed by the usual Simpson’s rule. Finally,
evaluating the derivative dη̂/ds in (3.5) by the four-point centred finite-difference
formula and expressing the boundary condition (3.7) as η̂(γj ) = σ (γj ) = 0 for
|j | � N + 1, we obtain the following 4N + 2 algebraic equations for {η̂, σ} ≡
(η̂(γ−N ), η̂(γ−N+1), . . . , η̂(γN ), σ (γ−N ), σ (γ−N+1), . . . , σ (γN )) from (3.5) and (3.6):

λ [Y]

{
η̂

σ

}
= [Z]

{
η̂

σ

}
, (3.11)

where [Y] and [Z] are the linear operators of (4N + 2) × (4N + 2) matrix form. Now
the original eigenvalue problem (2.8)–(2.12) reduces to that of the 4N + 2 algebraic
equations (3.11). The eigenvalues λ of the (4N + 2) × (4N + 2) matrix [Y−1Z] are
obtained by the QR algorithm (Wilkinson 1965).

Figure 2 shows computed eigenfunctions (φ̂, η̂) of a growing disturbance mode for
(h, ε) = (0.76, 0.15) (under the normalization (5.1) below). We see that the decay of
the eigenfunctions as x → −∞ is very slow. Since the eigenfunctions make oscillations
while they decay slowly as x → −∞, we need an enormous number of mesh points
in order to extend the computational domain up to the x-coordinate where the
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Figure 3. Real parts Re[η̂] of computed eigenfunction η̂ for two different values of xD =100
(thick solid line) and 1000 (thin solid line) when (h, ε) = (0.76, 0.15) (shown in (a)). Their
difference Re[η̂]|xD = 100 − Re[η̂]|xD = 1000 is shown in (b).

eigenfunctions completely decay. Especially when the speed of decay is much slower,
it is impossible to perform the computation within a reasonable time and memory
size. Thus, we tried to set the downstream end of the computational domain on
the x-coordinate where the eigenfunctions do not completely decay (η̂ = σ =0 is
imposed outside the computational domain), and carefully see how this artificial
boundary put on non-zero eigenfunctions influences the convergence of the numerical
results for various sets of (h, ε). The numerical results show very fast convergence
of the computed eigenvalues λ in terms of xD , where −xD (which is almost equal
to (3.9) with γ = −1) is the x-coordinate of the downstream artificial boundary.
Specifically, convergence of λ in terms of xD is achieved up to O(10−7) or more
with only xD � 30. The real parts of the computed eigenfunction η̂ for two different
values of xD (=100 and 1000) and their difference are also shown in figure 3, and
we see that the error is induced only in the vicinity of the artificial boundary (the
same is true of their imaginary parts and the other eigenfunction φ̂). Thus, the
numerical results are scarcely influenced by the artificial boundary put on non-zero
eigenfunctions.

Next, we examine convergence in terms of the mesh width. Table 1 shows
convergence of computed eigenvalues λ as half the number N of mesh points
is increased for other given computational parameters. We see that convergence
up to three significant digits is achieved with N =800 and 400 from the results
for (h, ε) = (0.76, 0.15) and (0.830976, 0.13), respectively. In the present study we
sought convergence up to at least three and two significant digits for any computed
eigenvalues λ of Re[λ] � 10−3 and Re[λ] < 10−3, respectively.
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(a) (b)
N λ λ (complex) λ (smaller real) λ (larger real)

200 0.0014879 ± 0.069577 i 0.011209 ± 0.028118 i 0.0048662 0.92000
400 0.0015007 ± 0.069583 i 0.011260 ± 0.028094 i 0.0048043 0.92079
800 0.0015054 ± 0.069586 i 0.011268 ± 0.028080 i 0.0048010 0.92102

1600 0.0015075 ± 0.069587 i 0.011271 ± 0.028074 i 0.0048018 0.92110

Table 1. Convergence of computed eigenvalues λ as half the number N of mesh points is
increased: (a) (h, ε) = (0.76, 0.15); (b) (h, ε) = (0.830976, 0.13). The computational parameters
are chosen as (∆min ,∆max , L) = (0.6, 250, 90) and (0.06, 250, 90) for (a) and (b), respectively.
xD = 102 for both cases.

4. Eigenvalues
Surface solitary waves are longitudinally stable for h < 0.7807, and longitudinally

unstable to a single disturbance mode for 0.7807 <h< 0.83028 and two modes for
0.83028 < h < 0.83305 (see the discussion after (2.15)). Numerical results of eigenvalues
obtained from linear stability analysis are given here in separate subsections for three
different types of solitary waves: longitudinally stable ones in § 4.1, those longitudinally
unstable to a single mode in § 4.2, and those longitudinally unstable to two modes in
§ 4.3. The transverse instabilities presented in these three subsections are then classified
in § 4.4.

4.1. Longitudinally stable solitary waves (h < 0.7807)

Numerical computation is carried out for various sets of h(<0.7807) and ε. Calculation
is made at least every 0.02 and 0.5 in ε in the ranges of ε � 1 and 1 <ε � 20,
respectively. For h � 0.713, there is no eigenvalue with a positive real part (in the
range of ε � 20). For h � 0.714, on the other hand, there is a single pair of complex-
conjugate eigenvalues with a positive real part if ε is sufficiently small and non-zero.
This result is consistent with the theoretical result obtained by Kataoka & Tsutahara
(2004a) that the solitary wave is transversely unstable for h > 0.7133. The real part
Re[λ] of the above computed eigenvalues having a positive real part is plotted as
a function of ε for h =0.714, 0.716, 0.718 and 0.72 in figure 4, and for h = 0.74,
0.76 and 0.78 in figure 5(a). The dashed line is the asymptotic solution for small ε

given by (2.16b), which agrees well with the corresponding numerical result for small
ε when h � 0.76 (for ε � 0.02 when h � 0.72 and for ε � 0.03 when 0.74 � h � 0.76),
whereas agreement is poor for h = 0.78. The large deviation for h = 0.78 is due to the
fact that the asymptotic solution (2.16) does not give good approximation near the
longitudinal stability threshold h = 0.7807, where |dE/dv| is small (see figure 1). The
asymptotic analysis that takes into account the effect of small |dE/dv| is carried out
in Appendix A, and the result (A 25b) for h = 0.78 is plotted in figure 5(a) in the solid
line. Good agreement with the numerical result is achieved.

Figures 4 and 5(a) show that the growth rate Re[λ], which is an increasing function
of ε for small ε, reaches a peak Re[λ]max at some finite wavenumber ε = εpeak

(peak wavenumber) and finally falls to zero at the higher wavenumber ε = εC (cutoff
wavenumber). This result implies that there is a high-wavenumber cutoff to the
transverse instability: the solitary wave is transversely unstable to a disturbance of
ε < εC , and stable to that of ε > εC . Table 2 arranges the maximum growth rate
Re[λ]max , the peak wavenumber εpeak at which Re[λ]max is achieved and the cutoff
wavenumber εC at which Re[λ] falls to zero, for various values of h (<0.7807).
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h Re[λ]max εpeak εC Class of instability

0.714 5 × 10−7 0.011 0.016
0.716 9 × 10−6 0.023 0.033
0.718 2.6 × 10−5 0.030 0.044
0.72 5.5 × 10−5 0.036 0.053
0.73 3.8 × 10−4 0.057 0.087
0.74 1.09 × 10−3 0.072 0.114 C0

0.75 2.35 × 10−3 0.083 0.140
0.76 4.40 × 10−3 0.091 0.164
0.77 7.60 × 10−3 0.093 0.187
0.78 0.0126 0.0884 0.205
0.7806 0.0130 0.0877 0.206

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 2. Maximum growth rate Re[λ]max , peak wavenumber εpeak at which Re[λ]max is
achieved, and cutoff wavenumber εC at which Re[λ] falls to zero, when the solitary wave is
longitudinally stable but transversely unstable (0.7133 <h< 0.7807). See § 4.4 for the class of
instability and figure 15(b) for the typical profile of Re[λ] versus ε.
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Figure 4. Real parts Re[λ] of computed eigenvalues λ having a positive real part versus ε
for h = 0.714 (�), 0.716 (�), 0.718 (�) and 0.72 (�). The dashed line represents the asymptotic
solution (2.16) for small ε.

We find that εpeak has a maximum at h = 0.770, whereas εC is a monotonically
increasing function of h for the longitudinally stable and transversely unstable range
0.7133 <h< 0.7807.
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Figure 5. Computed eigenvalues λ with a positive real part versus ε for h = 0.74 (�), 0.76
(�), and 0.78 (�): (a) Re[λ] versus ε; (b) Im[λ] versus ε. See caption of figure 4 for the dashed
line. The solid line for h = 0.78 is the asymptotic solution (A 25b) that takes into account the
effect of small |dE/dv|.
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h εmerge εS εL εC εR1 Class of instability

0.785 0.006 – – 0.211 –
0.79 0.025 – – 0.209 – R0

0.795 0.072 – – 0.184 –

}

0.7952 0.076 0.24 0.33 0.182 –
R10.7958 0.091 0.070 0.45 0.174 –

}
0.7959 0.095 0.020 0.46 0.172 – R2

0.79595 – – – 0.172 0.47 C1

0.796 – – – 0.171 0.47
0.797 – – – 0.147 0.56 C0

0.798 – – – 0.054 0.64

}

0.7981 – – – – 0.65
0.8 – – – – 0.78
0.81 – – – – 1.5 N
0.82 – – – – 3.3
0.828 – – – – 10

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

0.829 – – – 0.132 13 C0
0.83 – – – 0.198 17

}

Table 3. Merging wavenumber εmerge of two real branches starting from ε = 0, smaller- and
larger-end wavenumbers εS and εL of arc-shaped real branch, and cutoff wavenumbers εC and
εR1 of complex and the first real branches of eigenvalues, respectively, when the solitary wave
is unstable to a single longitudinal disturbance mode (0.7807 <h< 0.83028). See § 4.4 for the
class of instability and figure 15 for typical profiles of Re[λ] versus ε.

The imaginary part Im[λ] of the above complex-conjugate eigenvalues with a
positive real part is plotted for h = 0.74, 0.76 and 0.78 in figure 5(b) (Im[λ] is taken
to be positive). The dashed line is the asymptotic solution (2.16b) for small ε, which
agrees well with the numerical result for small ε for h � 0.76, whereas agreement
is poor for h = 0.78 due to the above-mentioned reason that (2.16) does not give a
good approximation for small |dE/dv|. The asymptotic solution (A 25b) that takes
into account the effect of small |dE/dv| is shown by the solid line in figure 5(b) for
h =0.78, which agrees well with the corresponding numerical result for small ε. As ε

increases, Im[λ] continues to rise until the cutoff wavenumber ε = εC , whereas Re[λ]
reaches an upper limit and then falls to zero at ε = εC .

4.2. Solitary waves longitudinally unstable to a single mode (0.7807 < h < 0.83028)

As in § 4.1, we computed at least every 0.02 and 0.5 in ε in the ranges of ε � 1
and 1 < ε � 20, respectively. Eigenvalues λ with a positive real part versus ε thus
obtained are plotted in figure 6 for h =0.785, 0.79 and 0.795. In contrast to the
longitudinally stable case where the eigenvalues are all complex, there are real
eigenvalues (represented by the black circles in figure 6). The dashed line in figure 6(a)
is the asymptotic solution (2.16a) for small ε, which agrees well with the corresponding
numerical result for sufficiently small ε and |λ|. There are two branches of real
eigenvalues for a given ε: one starting from λ> 0 at ε = 0 and the other from
the origin. These two real branches merge at some wavenumber ε = εmerge (merging
wavenumber), becoming a single branch of complex-conjugate eigenvalues with a
positive real part (represented by the white circles in figure 6). This complex branch
extends to its cutoff wavenumber ε = εC . Specific values of εmerge and εC are tabulated
in table 3.
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Figure 6. Computed eigenvalues λ with a positive real part versus ε for h =0.785, 0.79 and
0.795: (a) Re[λ] versus ε; (b) Im[λ] versus ε. � and � denote numerical results for the real
and complex eigenvalues, respectively. See caption of figure 4 for the dashed line.

Figure 6(a) indicates that the maximum growth rate Re[λ]max is achieved by a
transverse disturbance (ε > 0) for h � 0.785 but by a longitudinal one (ε = 0) for
h � 0.79. The most rapidly growing disturbance mode switches from the transverse
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Figure 7. For caption see page 142.

(three-dimensional) one to the longitudinal (two-dimensional) one when h is between
0.785 and 0.79, or more precisely, between 0.7863 and 0.7864.

Figure 7 shows λ versus ε for h = 0.7952, 0.7958, 0.7959, 0.79595, 0.796 and 0.797.
The dashed line is the asymptotic solution (2.16) for small ε, and good agreement
with the numerical result is achieved up to around ε = 0.05, except for the case
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Figure 7. Computed eigenvalues λ with a positive real part versus ε for h = 0.7952, 0.7958,
0.7959, 0.79595, 0.796 and 0.797: (a) Re[λ] versus ε; (a′) enlarged view of (a) for h = 0.7959
near the origin; (b) Im[λ] versus ε; � and � denote numerical results for the real and complex
eigenvalues, respectively. See caption of figure 4 for the dashed line. The solid line for h =
0.7959 and 0.79595 is the asymptotic solution (B 25) that takes into account the effect of small
|dv/dh|. Note that the dashed line in (a) for h =0.79595 is superposed on the solid line.

of h = 0.7959; agreement is poor for h = 0.7959, as shown in figure 7(a′). Such a
deviation for h = 0.7959 is due to the fact that the above asymptotic solution (2.16)
does not give a good approximation when |dv/dh| is small (dv/dh = 0 at h = 0.79591;
see figure 1a). Asymptotic analysis that takes into account the effect of small |dv/dh|
is carried out in Appendix B, and the result (B 25) for h = 0.7959 is plotted in the
solid line in figure 7. Good agreement with the corresponding numerical result can
be found, and a complicated dependence of λ on ε is realized well (see figure 7a′).
The same asymptotic solution (B 25) is also plotted for h =0.79595 in the solid line
in figure 7, which agrees well with the numerical result for small ε.

Let us see how the profile of λ versus ε varies as h increases around dv/dh = 0
(around h = 0.79591). For h = 0.7952 an arc-shaped branch of real eigenvalues appears
from the axis Re[λ] = 0 with both ends placed on the axis Re[λ] = 0 (see figure 7a
for h = 0.7952). The positions of the two ends, denoted by ε = εS and εL (>εS), are
tabulated in table 3. As h increases further, this arc-shaped branch approaches the
pre-existing real branch (see figure 7a for h = 0.7958), and partly merges with it,
forming a single complex branch (see figure 7a for h = 0.7959). This complex branch
extends its range to the origin and the larger-ε side, and finally reaches the origin at
h =0.79591 (see figure 7a for h = 0.79595) and the pre-existing complex branch on the
larger-ε side at h = 0.795955 (see figure 7a for h = 0.796). As a result of this process,
a unified complex branch and a unified real branch are constructed. Thus, there are
two independent unstable branches, the complex one and the real one (the latter is
called the first real branch), which run for 0 < ε < εC and 0 < ε < εR1, respectively.
Such examples of λ versus ε are shown in figure 7 for h = 0.796 and 0.797. Their
cutoff wavenumbers εC and εR1 are tabulated in table 3.

As h becomes larger, the above complex branch approaches the axis Re[λ] = 0 (see
figure 7a for h = 0.797), and finally disappears into the axis Re[λ] = 0 at h = 0.79803
when Q defined by (2.17) changes sign to positive (see figure 1a). Figure 8 clearly
shows the complex branch approaching the axis Re[λ] = 0 for h = 0.7977, 0.7978,
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Figure 8. Re[λ] versus ε for h = 0.7977 (�), 0.7978 (�), 0.7979 (�) and 0.798 (�). See caption
of figure 4 for the dashed line. Note that there is an additional branch of positive real
eigenvalues (the first real branch) outside the range of the figure.

0.7979 and 0.798. After disappearance of the complex branch, only the first real
branch remains as an unstable branch. Such examples of λ versus ε are presented in
figure 9 for h = 0.7981, 0.81, 0.82 and 0.828, and their cutoff wavenumbers εR1 are
tabulated in table 3.

The complex branch, which disappeared at h = 0.79803, reappears from the axis
Re[λ] = 0 at h = 0.82811 when Q becomes negative again (see figure 1b). Figure 10
clearly shows such reappearance of the complex branch for h = 0.8282, 0.8283 and
0.8284. Figure 11(a′) shows the above complex branch for the larger amplitudes
h = 0.829 and 0.83. The dashed line is the ordinary asymptotic solution (2.16b) for
small ε, and the solid line for h = 0.83 is the solution (A 25b) that takes into account
the effect of small |dE/dv| (dE/dv = 0 at h = 0.83028; see figure 1b). The dashed
line for h = 0.829 and the solid line for h = 0.83 agree well with the corresponding
numerical results for ε � 0.03. Figure 11(a) shows that there is an additional real
branch (the first real branch) of large positive eigenvalues. The cutoff wavenumbers
εC and εR1 of the complex and the first real branches are tabulated in table 3.

It should be noted here that the unstable complex branch appears only when Q < 0,
and its profile on the ε − Re[λ] plane is similar if the sign of dE/dv is the same. For
instance, the complex branches for h = 0.796, 0.797 (see figure 7a), 0.829 and 0.83
(see figure 11a′), for which dE/dv > 0, all start from the origin in such a way that
the real part Re[λ] rises to its maximum and falls to zero. In contrast, the complex
branches for h = 0.785, 0.79, 0.795, 0.7952 and 0.7958 (see figures 6a and figures 7a),
for which dE/dv < 0, start not from the origin but bifurcate from the middle of the
real branch and fall to Re[λ] = 0. Such a similarity of Re[λ] versus ε depending on
the signs of the two parameters dE/dv and Q of the solitary wave will be discussed
more generally in § 4.4.
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caption of figure 4 for the dashed line. Note that there is an additional branch of positive real
eigenvalues outside the range of the figure.
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Figure 11. Computed eigenvalues λ with a positive real part versus ε for h = 0.829 (�, �) and
0.83 (�, �), where the black and white markers represent numerical results for the real and
complex eigenvalues, respectively: (a) Re[λ] versus ε; (a′) enlarged view of (a) near the origin;
(b) Im[λ] versus ε. See caption of figure 4 for the dashed line. The solid line for h = 0.83 is the
asymptotic solution (A 25b) that takes into account the effect of small |dE/dv|.

4.3. Solitary waves longitudinally unstable to two modes (0.83028 < h < 0.83305)

We computed at least every 0.02, 0.5 and 2 in ε in the ranges of ε � 1, 1 <ε � 20 and
20 < ε � 300, respectively. The λ versus ε profiles for h = 0.8309, 0.83097, 0.830976,
0.830977 and 0.831 thus obtained are plotted in figure 12. The dashed lines are the
ordinary asymptotic solution (2.16) for small ε, whereas the solid lines for h = 0.830976
and 0.830977 are the solution (B 25) that takes into account the effect of small |dv/dh|
(dv/dh = 0 at h = 0.8309762; see figure 1b). These asymptotic solutions agree well with
the corresponding numerical results for small ε and |λ|.

We find from figure 12(a′) for h = 0.8309 that λ versus ε for h = 0.8309 is similar
to those for h = 0.785, 0.79 and 0.795 (see figure 7a) in the sense that two different
real branches starting from ε = 0 merge at some wavenumber ε = εmerge , becoming
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Figure 12. For caption see page 148.

a single complex branch running from ε = εmerge to εC . The difference is that there
is an additional real branch (the first real branch) of large positive eigenvalues
for h = 0.8309, as shown in figure 12(a). Table 4 arranges the cutoff wavenumbers
εC and εR1 of the complex and the first real branches together with the merging
wavenumber εmerge . Figure 12(a′) for h = 0.83097 shows that an arc-shaped branch of
real eigenvalues appears from the axis Re[λ] = 0 with both ends placed on the axis
Re[λ] = 0. The end points, denoted by ε = εS and εL, are tabulated in table 4. As
in the case of solitary waves unstable to a single longitudinal mode, this arc-shaped
branch approaches the pre-existing real branch and partly merges with it, forming a
single complex branch (see figure 12(a′, a′′) for h = 0.830976). This complex branch
extends its range to the origin and the larger-ε side, and finally reaches the origin at
h =0.8309762 (see figure 12a′ for h = 0.830977) and the pre-existing complex branch
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Figure 12. Computed eigenvalues λ with a positive real part versus ε for h = 0.8309 (�,
�), 0.83097 (�, �), 0.830976 (�, �), 0.830977 (	, �) and 0.831 (�, �), where the black and
white markers represent numerical results for the real and complex eigenvalues, respectively:
(a) Re[λ] versus ε (h =0.8309 and 0.831); (a′) enlarged view of (a) near the origin; (a′′) further
enlarged view of (a′) for h = 0.830976 near the origin; (b) Im[λ] versus ε. See caption of
figure 4 for the dashed line. The solid line for h =0.830976 and 0.830977 is the asymptotic
solution (B 25) that takes into account the effect of small |dv/dh|. Note that the dashed line
in (a ′) for h = 0.830977 is superposed on the solid line. The results for h = 0.83097, 0.830976
and 0.830977 are not shown in (a), since they nearly overlap the results for h = 0.8309 and
0.831.

on the larger-ε side at h =0.830980. Finally, there exist three independent unstable
branches: two newly generated branches, namely the complex one and the real one
(the latter is called the second real branch), and the pre-existing first real branch, as
shown in figure 12(a, a′) for h = 0.831. Their cutoff wavenumbers εC (complex), εR1

(first real) and εR2 (second real) are tabulated in table 4.
The above complex branch approaches the axis Re[λ] = 0 as h increases, and finally

disappears into the axis Re[λ] = 0 at h = 0.83108 when Q changes sign to positive (see
figure 1b). Figure 13 for h = 0.832 is an example of λ versus ε after such disappearance.
There is no complex branch; only the first and second real branches exist. Their cutoff
wavenumbers εR1 and εR2 are tabulated in table 4. At h = 0.83292, Q becomes negative



Transverse instability of surface solitary waves. Part 2 149

h εmerge εS εL εC εR1 εR2 Class of instability

0.8309 0.063 – – 0.192 24 – R0

0.83097 0.091 0.081 0.39 0.176 25 – R1

0.830976 0.095 0.014 0.40 0.175 25 – R2

0.830977 – – – 0.174 25 0.41 C1

0.831 – – – 0.166 25 0.46 C0

0.832 – – – – 47 1.9 N
0.833 – – – 0.166 276 14 C0

Table 4. Merging wavenumber εmerge of two real branches starting from ε = 0, smaller- and
larger-end wavenumbers εS and εL of arc-shaped real branch, and cutoff wavenumbers εC , εR1

and εR2 of complex, the first real and the second real branches of eigenvalues, respectively, when
the solitary wave is unstable to two longitudinal disturbance modes (0.83028 <h< 0.83305).
See § 4.4 for the class of instability and figure 15 for typical profiles of Re[λ] versus ε.

First real branch

Second real branch

h = 0.832

0.5

10 20
ε

λ

30 40 500

1.0

1.5

Figure 13. Computed eigenvalues λ with a positive real part (which are all real)
versus ε for h = 0.832.

again (see figure 1c), and the complex branch reappears. Figure 14 for h =0.833 is
an example of λ versus ε after such reappearance, and figure 14(a′) clearly shows the
existence of the unstable complex branch. The corresponding cutoff wavenumber εC ,
together with those of the first and second real branches, εR1 and εR2, are tabulated
in table 4.
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Figure 14. Computed eigenvalues λ with a positive real part versus ε for h = 0.833: (a) Re[λ]
versus ε; (a′) enlarged view of (a) near the origin; (b) Im[λ] versus ε. � and � denote numerical
results for the real and complex eigenvalues, respectively. See caption of figure 4 for the dashed
line.

4.4. Classification of transverse instability

There is a similarity in the profiles of λ versus ε. For instance, similarity is found
between those for h = 0.82 and 0.832 (which we will call Class N); those for h = 0.797
and 0.831 (Class C0); those for h = 0.79595 and 0.830977 (Class C1); those for h = 0.79
and 0.8309 (Class R0); those for h = 0.7958 and 0.83097 (Class R1); and those for
h =0.7959 and 0.830976 (Class R2). The only difference in each pair is that there is
an additional real branch of large positive eigenvalues for the latter case because the
solitary wave in the former case is unstable to a single longitudinal mode, whereas
the solitary wave in the latter case is unstable to two modes. Typical profiles of Re[λ]
versus ε are illustrated in figure 15, where m is the number of growing longitudinal
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Figure 15. For caption see next page.
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Figure 15. Typical profiles of Re[λ] versus ε: (a) Class N (dE/dv > 0 and Q > 0); (b) Classes
C0 and C1 (dE/dv > 0 and Q < 0); (c) Classes R0, R1 and R2 (dE/dv < 0). The solid and
dashed lines represent the real and complex solution branches, respectively, and m is the
number of growing longitudinal disturbance modes having Re[λ] > 0 at ε =0.
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disturbance modes having Re[λ] > 0 at ε =0. The classification of transverse instability
(into three basic classes N, C and R, and further into six subclasses N, C0, C1, R0, R1

and R2) is as follows.
(i) Class N: no unstable branch is connected to the origin on the ε−Re[λ] plane. A

typical profile of Re[λ] versus ε is illustrated in figure 15(a). This basic class appears
for dE/dv > 0 and Q > 0.

(ii) Class C: an unstable branch of complex eigenvalues is connected to the origin
on the ε − Re[λ] plane. More precisely, if the other end of the above complex branch
is located on the axis Re[λ] = 0, we call it Class C0, and if the above complex branch
is interrupted by a real branch on its way, we call it Class C1. Typical profiles of Re[λ]
versus ε are illustrated in figure 15(b). This basic class C appears for dE/dv > 0 and
Q < 0, in which Class C1 occurs only in a limited range of h near the amplitude for
dv/dh = 0.

(iii) Class R: an unstable branch of real eigenvalues is connected to the origin
on the ε − Re[λ] plane. More precisely, if the other end of the above real branch
is located on the axis ε = 0, we call it Class R1 or R0 depending on whether there
is an arc-shaped branch of real eigenvalues (whose two ends are placed on the axis
Re[λ] = 0). If the above real branch is interrupted on its way to the axis ε = 0 by a
complex branch, we call it Class R2. Typical profiles of Re[λ] versus ε are illustrated
in figure 15(c). This basic class R appears for dE/dv < 0, in which Classes R1 and R2

occur only in a limited range of h near the amplitude for dv/dh = 0.
For instance, the transverse instability for h = 0.797 is called ‘Class C0 with m =1’,

since there is an unstable complex branch that is connected to the origin and the
axis Re[λ] = 0 (Class C0), and the solitary wave is unstable to a single longitudinal
disturbance mode (m =1).

Let us see how the class of transverse instability changes as h increases from small
amplitude h � 1. For h < 0.7133 there is no eigenvalue with a positive real part, and
this type is called Class N with m =0. For 0.7133 <h< 0.7807, there is an unstable
complex branch which is connected to the origin and the axis Re[λ] = 0 (see figures
4 and 5a). This type is called Class C0 with m =0.

For larger h between 0.7807 and 0.83028, the solitary wave is unstable to a single
longitudinal mode (m =1). The following classes appear in increasing order of h:

Class R

⎧⎨
⎩

0 for 0.7807 < h < 0.7951
1 for 0.7951 < h < 0.79587
2 for 0.79587 < h < 0.79591

⎫⎬
⎭ : dE/dv < 0,

Class C

{
1 for 0.79591 < h < 0.795955
0 for 0.795955 < h < 0.79803

}
: dE/dv > 0 and Q < 0,

Class N for 0.79803 < h < 0.82811 : dE/dv > 0 and Q > 0,

Class C0 for 0.82811 < h < 0.83028 : dE/dv > 0 and Q < 0.

Note that the marginal classes of instability, i.e. Classes C1, R1 and R2, occur only in
a limited range of h near the amplitude h = 0.79591 for dv/dh = 0 (see figure 1a).

For larger h between 0.83028 and 0.83305, the solitary wave is unstable to two
longitudinal modes (m = 2), and the results in § 4.3 indicate that the same classes
of transverse instability occur as those for m =1. Thus, the classes of transverse
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h 2x(ηs = 0.5h) 2x(ηs = 0.9h) 2x(ηs = 0.99h)

0.76 2.112 0.584 0.163
0.78 2.023 0.527 0.143
0.796 1.946 0.471 0.123
0.83 1.789 0.307 0.042
0.831 1.787 0.303 0.038
0.833 1.782 0.297 0.030

Table 5. Horizontal widths 2x of the unperturbed solitary waves at ηs = 0.5h, 0.9h and 0.99h.

instability that occur in increasing order of h from small amplitude h � 1 are

N → C0 for m = 0,

→ R{0→1→2} → C{1→0} → N → C0 for m = 1,

→ R{0→1→2} → C{1→0} → N → C0 for m = 2,

→ . . . .

⎫⎪⎬
⎪⎭ (4.1)

It is expected that a repetition of the same cycle, → R{0→1→2} → C{1→0} → N → C0,
continues for m � 3, although this speculation has not been confirmed numerically.

It is convenient to use figure 1 in order to find the corresponding basic class of
transverse instability when the amplitude h of the solitary wave is given. In fact,
Class N appears on the dotted line, Class C on the thin solid line and Class R on
the thick solid line, because dE/dv > 0 and Q > 0 on the dotted line, dE/dv > 0 and
Q < 0 on the thin solid line, and dE/dv < 0 on the thick solid line. The number m

can be determined by the number of times the curve passes through the crosses when
the solution branch is traced from small amplitude h � 1. In this way, we can easily
obtain the corresponding basic class of transverse instability for given h from figure 1.

Finally in this section, we should note that there is a high-wavenumber cutoff to all
the transverse instability investigated here. Any transversely unstable solitary waves
become stable to a disturbance of transverse wavenumber higher than some critical
value εcri which depends on the wave amplitude h (e.g. εcri = 0.205, 1.5 and 17 for
h =0.78, 0.81 and 0.83, respectively). We have confirmed this fact up to h � 0.833,
which is very near the limiting value 0.83322.

5. Eigenfunctions (surface profiles of growing disturbance modes)
Numerical results on eigenfunctions (surface profiles of growing disturbance modes)

are presented here. For the sake of comparison, horizontal widths 2x of the
unperturbed solitary waves at ηs =0.5h, 0.9h and 0.99h are tabulated in table 5.
Results on eigenfunctions are given in separate subsections for three different types
of solitary waves: longitudinally stable ones in § 5.1, those longitudinally unstable to
a single mode in § 5.2, and those longitudinally unstable to two modes in § 5.3.

5.1. Longitudinally stable solitary waves (h < 0.7807)

The surface profile η̂ of a growing disturbance mode is shown in figure 16 (h = 0.76)
and figure 17 (h = 0.78). The surface profile η̂ is complex and arbitrary under
multiplication by a complex constant. Such arbitrariness is removed here by imposing
the following normalization:

max |Re [η̂]| = 1,

∫ ∞

−∞
Im [η̂]

dηs

dx
dx = 0, (5.1a, b)
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where the first one normalizes the profile η̂ by the maximum value of |Re[η̂]|. The
sign of η̂ is chosen such that ∫ ∞

−∞
Re [η̂]

dηs

dx
dx < 0. (5.1c)

The solid lines in figures 16 and 17 are numerical results thus obtained. The dotted
lines are the asymptotic solution for small ε given by (3.1), (3.9) and (3.22) of
Kataoka & Tsutahara (2004a) under the above normalization (5.1), and the dash-
dot lines plotted only for h = 0.78 in figure 17 are the asymptotic solution (A 2),
(A 11b) and (A 19) that takes into account the effect of small |dE/dv| (dE/dv =0 at
h =0.7807). When h = 0.76, the former (dotted line) agrees well with the numerical
result (solid line) for small ε (up to around ε � 0.05), and when h = 0.78, the latter
(dash-dot line) agrees well with the numerical result for small ε (up to around ε � 0.03).
Thus, the surface profile of a growing disturbance mode for small ε can be represented
by either of the asymptotic solutions. For larger ε, however, these asymptotic solutions
do not agree well with the numerical results, as shown in figures 16 and 17.

In the far field behind the core of the solitary wave, a physical interpretation of
the wave motion can be given as follows. In this region, linear waves of transverse
wavenumber ε propagate. They are radiated from the core of the solitary wave by
harmonic resonance with oscillations of a distorted solitary wave whose angular
frequency is Im[λ] and whose amplitude grows like exp(Re[λ]t). The x- and t-
dependence of radiated waves is expressed as exp(knx + λt) (n= 1, 2, . . .), where kn

are solutions of the linear dispersion relationship:

λ = knv ± i

√√
−k2

n + ε2 tanh
√

−k2
n + ε2, (5.2)

with λ being substituted from the numerical result. There are many solutions kn for
a given λ. In the present case where λ is complex, all these solutions kn become
complex. Especially when the real part Re[λ] of complex eigenvalue λ is positive
and small, which holds true for the present case, two solutions kn (say k1 and k2)
have positive real parts that are much smaller than the other solutions of kn. For
instance, (Re[k1], Re[k2]) = (0.003, 0.008), (0.005, 0.011) and (0.002, 0.003) for ε =0.05,
0.1 and 0.15, respectively, when h = 0.76, and (0.008, 0.024), (0.015, 0.031) and (0.011,
0.020) for ε = 0.03, 0.1 and 0.15, respectively, when h = 0.78. These waves of the two
smallest decaying rates Re[k1] and Re[k2] decay slowly as x → −∞ so that they
remain non-zero even far behind the solitary wave. Their wavenumbers |Im[k1]| and
|Im[k2]| are larger for larger ε. Specifically, (Im[k1], Im[k2]) = (0.020, 0.13), (0.046,
0.23) and (0.076, 0.33) for ε = 0.05, 0.1 and 0.15, respectively, when h = 0.76, and
(0.008, 0.08), (0.049, 0.22) and (0.081, 0.31) for ε =0.03, 0.1 and 0.15, respectively,
when h = 0.78. These results on the x-dependence of radiated waves obtained from
the linear dispersion relationship (5.2) agree well with those observed in surface
profiles η̂ for x < 0 presented in figures 16(a, b) and 17(a, b) especially for ε � 0.1. For

Figure 16. Surface profile η̂ of a growing disturbance mode for h = 0.76 (ε =0.01, 0.05, 0.1,
0.15): (a) Re[η̂] versus x; (a′) enlarged view of (a) in the core region (−10 <x < 10); (b) Im[η̂]
versus x; (b′) enlarged view of (b) in the core region (−10 <x < 10). The solid line is the
numerical result, and the dotted line is the asymptotic solution for small ε given by (3.1), (3.9)
and (3.22) of Kataoka & Tsutahara (2004a). Both profiles are normalized by (5.1). The dotted
line is almost superposed on the solid line for ε =0.01.
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Figure 17. For caption see next page.
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smaller ε, it is difficult to discern radiated waves because their amplitudes become
much smaller as ε decreases.

5.2. Solitary waves longitudinally unstable to a single mode (0.7807 < h < 0.83028)

The qualitative features of η̂ when the corresponding eigenvalue is complex are
basically the same as those presented in § 5.1. Here we discuss the case where the
corresponding eigenvalue is real. Figure 18 shows the surface profiles η̂ (which are
real) of growing disturbance modes for h = 0.796 and 0.83 whose eigenvalues are on
the first real branch. The normalization (5.1a,c) is applied. The profiles η̂ in the core
region have a forward peak and a rather gradual tail depression. Their horizontal
length scale in the core region diminishes considerably as h increases (see figure 18a′

for h = 0.796 and figure 18b′ for h = 0.83), whereas it is almost unchanged with respect
to the variation of ε.

In the far field behind the core of the solitary wave, evanescent waves appear in the
present case where λ is real. Their x- and t-dependence is expressed as exp(knx + λt)
(n= 1, 2, . . .), where kn are solutions of the linear dispersion relationship (5.2) for a
positive real λ. In fact, kn are all real or two of them become a complex-conjugate pair
having a positive real part. In general, a complex-conjugate pair appears unless both
ε and λ are small (e.g. it appears for ε � 0.058 when h = 0.796 and for ε � 0 when
h =0.83). When kn are all real, the surface profile η̂ behind the solitary wave decays
monotonically as x → −∞. When kn include a pair of complex conjugates of the
form kr ± iki (kr, ki > 0), which occur in general, the surface profile behind the solitary
wave looks oscillatory in x because the evanescent waves corresponding to complex
kn = kr ± iki propagate not along the x-coordinate but along ±kix + εy =constant
diagonally. Here kr and ki represent, respectively, the decay rate and the wavenumber
in x of diagonally radiated evanescent waves. Specifically, (kr, ki) = (0.033, 0.12), (0.015,
0.23) and (0.006, 0.43) for ε = 0.1, 0.2 and 0.4, respectively, when h = 0.796, and (0.52,
1.8), (0.31, 2.5) and (0.094, 3.0) for ε = 5, 10 and 15, respectively, when h = 0.83. These
results for kr and ki obtained from the linear dispersion relationship (5.2) agree with
those observed in surface profiles η̂ for x < 0 presented in figure 18(a, b) especially
for ε � 0.2 (h = 0.796) and ε � 10 (h = 0.83). For smaller ε, it is difficult to discern
evanescent waves because their amplitudes become much smaller as ε decreases.

5.3. Solitary waves longitudinally unstable to two modes (0.83028 < h < 0.83305)

Figure 19 shows the surface profiles η̂ of growing disturbance modes for h = 0.831
and 0.833 whose eigenvalues are on the second real branch (see figures 12a′ and 14a).
The profiles η̂ in the core region have a sharp-pointed depression at x =0, together
with a rather gradual forward elevation (for x > 0) and a tail depression (for x < 0).
Their horizontal length scale in the core region diminishes considerably as h increases
(see figure 19a′ for h = 0.831 and figure 19b′ for h = 0.833), whereas it is almost
unchanged with respect to the variation of ε. As for the profile η̂ behind the solitary
wave, evanescent waves appear in accordance with λ being real, as in § 5.2. The decay
rate kr and the wavenumber ki in x of diagonally radiated evanescent waves calculated

Figure 17. Surface profile η̂ of a growing disturbance mode for h = 0.78 (ε = 0.005, 0.03, 0.1,
0.15): (a) Re[η̂] versus x; (a′) enlarged view of (a) in the core region (−10 <x < 10); (b) Im[η̂]
versus x; (b′) enlarged view of (b) in the core region (−10 <x < 10). See caption of figure 16
for the solid and dotted lines. The dash-dot line represents the asymptotic solution (A 2),
(A 11b) and (A 20) that takes into account the effect of small |dE/dv| and is normalized by
(5.1). The dash-dot line is almost superposed on the solid line for ε = 0.005 and 0.03.
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Figure 18. Surface profile η̂ of a growing disturbance mode whose eigenvalue is on the first
real branch: (a) h = 0.796 (ε =0, 0.1, 0.2, 0.4); (a′) enlarged view of (a) in the core region
(−5 <x < 5); (b) h = 0.83 (ε =0, 5, 10, 15); (b′) enlarged view of (b) in the core region
(−0.5 <x < 0.5). All profiles are numerical results normalized by (5.1), and the result for ε = 0
is obtained by the numerical method in Kataoka (2006a).
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Figure 19. Surface profile η̂ of a growing disturbance mode whose eigenvalue is on the second
real branch: (a) h =0.831 (ε = 0, 0.1, 0.2, 0.4); (a′) enlarged view of (a) in the core region
(−2 <x < 2); (b) h = 0.833 (ε = 0, 5, 10, 13); (b′) enlarged view of (b) in the core region
(−0.2 <x < 0.2). All profiles are numerical results normalized by (5.1), and the result for ε = 0
is obtained by the numerical method in Kataoka (2006a).
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from the linear dispersion relationship (5.2) are (kr, ki) =(0.058, 0.11), (0.021, 0.24)
and (0.006, 0.43) for ε = 0.1, 0.2 and 0.4, respectively, when h = 0.831, and (0.44, 1.8),
(0.20, 2.5) and (0.03, 2.8) for ε = 5, 10 and 13, respectively, when h = 0.833. These
results are consistent with those observed in surface profiles in figures 19(a, b).

6. Concluding remarks
We have numerically examined the linear transverse stability of finite-amplitude

surface solitary waves on the basis of the three-dimensional Euler set of equations.
Numerical results support the previous theoretical result by Kataoka & Tsutahara
(2004a) that surface solitary waves are longitudinally stable but transversely unstable
for a wave amplitude greater than 0.7133 and less than 0.7807. Eigenvalues and
eigenfunctions of growing transverse disturbance modes agree well with those
obtained by the theoretical asymptotic analysis for disturbances of small transverse
wavenumbers. In the special cases where the energy or the wave speed of the solitary
wave is near its extremum, the ordinary asymptotic solution obtained by Kataoka &
Tsutahara (2004a) and Kataoka (2008) does not give a good approximation, and we
present new asymptotic solutions valid for these cases in Appendices A and B, which
show good agreement with the corresponding numerical results.

As the transverse wavenumber increases, the growth rate of the disturbance exhibits
the following features. For the longitudinally stable but transversely unstable solitary
waves, the growth rate, which is an increasing function for small wavenumbers,
reaches a peak and finally falls to zero at some finite wavenumber. Thus, there is a
high-wavenumber cutoff to the transverse instability. For the longitudinally unstable
solitary waves, the dependence of the growth rate on the transverse wavenumber
exhibits various complicated patterns. We have grouped them into three basic classes
(Classes N, C and R) in terms of the signs of the two parameters dE/dv and Q of the
solitary wave, and further into six (N, C0, C1, R0, R1 and R2) by distinguishing three
more classes (C1, R1 and R2) which occur in a limited range of wave amplitudes.
Typical profiles of the growth rate versus transverse wavenumber are illustrated in
figure 15.

Surface profiles of growing disturbance modes are well described by the asymptotic
solution if the transverse wavenumber is small. As the transverse wavenumber
increases, the surface profiles of growing disturbance modes show little change in
the core region as functions of the transverse wavenumber. They are almost the
same as long as the corresponding eigenvalues belong to the same branch (e.g. the
first or the second real branch). Their horizontal length scale, however, diminishes
considerably as the wave amplitude increases. In the region behind the core of the
solitary wave, radiated waves propagate, and their motions are discussed using the
linear dispersion relationship.

To the best of the author’s knowledge, this is the first study conducted to clarify
the transverse stability of finite-amplitude surface solitary waves numerically. The
motivation comes from the discovery of longitudinally stable but transversely unstable
surface solitary waves by the theoretical asymptotic analysis of Kataoka & Tsutahara
(2004a). In fact, such longitudinally stable but transversely unstable solitary waves
have also been found for the other types of solitary wave solutions. For instance, they
were found for interfacial solitary wave solutions in a two-layer-fluid system (Kataoka
2008) and those in the framework of the generalized Kadomtsev–Petviashvili equation
with negative dispersion (Kataoka & Tsutahara 2004b). It is therefore interesting to
examine whether the classification of transverse instability for surface solitary waves
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presented in this study is also applicable to these types of solitary wave solutions.
This problem on the generality of the classification is left as the subject of future
work.

Appendix A. Asymptotic analysis for small ε when |dE/dv| � 1

We seek an asymptotic solution of (2.8)–(2.12) for small ε when |dE/dv| = O(ε2/3),
i.e.

dE

dv
= ε2/3∆, (A 1)

where ∆ is a given constant of the order of unity (the case where |dE/dv| is of a
different order of small magnitude from O(ε2/3) is discussed in the last paragraph of
this Appendix). At the leading order in ε, the term of O(ε2) on the right-hand side
of (2.8) can be ignored, and the eigenvalue problem (2.8)–(2.12) has the following
leading-order solution with λ=0:

φ̂ = φ̂C0 ≡ ∂Φs

∂x
, η̂ = η̂C0 ≡ dηs

dx
, λ = 0. (A 2)

The solution (A 2) is subjected to a slow time development if the neglected term
of O(ε2) in (2.8) is recovered. We investigate the asymptotic behaviour for small ε

under the assumption that its slow time development is described with a time scale
of O(ε−2/3), i.e.

λ = ε2/3λ1, (A 3)

where λ1 is an unknown constant of the order of unity. For the sake of conciseness,
we use

α = ε2/3 (A 4)

in the analysis.

A.1. Core solution

We look for a solution of (2.8)–(2.11) with a moderate variation in x and z

(∂φ̂/∂x = O(φ̂), ∂φ̂/∂z = O(φ̂), and dη̂/dx = O(η̂)), in the following power series of
α(= ε2/3):

φ̂C = φ̂C0 + αφ̂C1 + α2φ̂C2 + · · · , η̂C = η̂C0 + αη̂C1 + α2η̂C2 + · · · , (A 5a,b)

where the subscript C is attached to indicate the type of solution (core solution).
Substituting (A 3) and (A 5) into (2.8)–(2.11) and arranging the same-order terms

in α, we obtain a series of sets of equations for (φ̂Cn, η̂Cn) (n= 1, 2, . . .):

∂2φ̂Cn

∂x2
+

∂2φ̂Cn

∂z2
= Fn ≡

{
0 (n = 1 and 2),

φ̂Cn−3 (n � 3),
(A 6)

LK [φ̂Cn, η̂Cn] = Gn ≡ −λ1η̂Cn−1 at z = ηs, (A 7)

LD[φ̂Cn, η̂Cn] = Hn ≡ −λ1φ̂Cn−1 at z = ηs, (A 8)

∂φ̂Cn

∂z
= 0 at z = −1, (A 9)

where LK and LD are defined by (2.13). For this set of inhomogeneous equations
(A 6)–(A 9) to have a solution that does not diverge exponentially as x → ±∞, its
inhomogeneous terms Fn, Gn and Hn on the right-hand sides of (A 6)–(A 8) must
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satisfy the solvability condition:

n∑
m=1

αm

{∫ ∞

−∞
dx

∫ ηs

−1

∂Φs

∂x
Fmdz +

∫ ∞

−∞

[
∂Φs

∂x
Gm − dηs

dx
Hm

]
z=ηs

dx

}
= O(αn+1),

(A 10)

where the quantities in the square brackets with subscript z = ηs are evaluated at
z = ηs .

For n= 1, the solvability condition (A 10) is identically satisfied, and a solution for
n= 1 is explicitly given by

φ̂C1 = −λ1

∂Φs

∂v
, η̂C1 = −λ1

∂ηs

∂v
, (A 11a,b)

where ∂Φs/∂v and ∂ηs/∂v represent the derivatives of Φs and ηs with respect to v

for fixed x and z. For n= 2, (A 10) is identically satisfied due to (A 1), and for n=3
it becomes

λ2
1∆

v
+ [φ̂C1ûC2]x→∞ − [φ̂C1ûC2]x→−∞ + E = O(α), (A 12)

where E is defined by (2.15) and

ûC2 =
∂φ̂C2

∂x
− vη̂C2. (A 13)

In (A 12), the quantities in the square brackets with subscript x → −∞ or ∞ are
evaluated as x → −∞ or ∞, and use has been made of the formula (3.16) of Kataoka
(2008). Here [φ̂C1]x→±∞ and [ûC2]x→±∞ appearing on the left-hand side of (A 12) satisfy
the relations

[φ̂C1]x→−∞ = [φ̂C1]x→∞ − λ1

dΩ

dv
, [ûC2]x→−∞ = [ûC2]x→∞ − λ2

1

dM

dv
, (A 14a,b)

where Ω and M are defined by (2.18). We can obtain (A 14b) by integrating (A 6) for
n= 2 with respect to x and z and using (A 7) for n= 2.

A.2. Far-field solution

Introducing a shrunken coordinate with respect to x,

X = αx, (A 15)

we seek a solution of (2.8)–(2.11) with a moderate variation in X and z (∂φ̂/∂X = O(φ̂),
∂φ̂/∂z =O(φ̂), and dη̂/dX = O(η̂)), in the following power series of α:

φ̂F = αφ̂F1(X, z) + α2φ̂F2(X, z) + · · · , η̂F = α2η̂F2(X) + α3η̂F3(X) + · · · , (A 16a,b)

where the subscript F is attached to show the type of solution (far-field solution).
Substituting (A 15) and (A 16) into (2.8)–(2.11), and arranging the same-order terms

in α, we obtain a series of sets of equations for φ̂Fn (n= 1, 2, . . . ):

∂2φ̂Fn

∂z2
= In ≡ −∂2φ̂Fn−2

∂X2
+ φ̂Fn−3, (A 17)

∂φ̂Fn

∂z
= Jn ≡

(
λ1 − v

d

dX

)
η̂Fn−1 at z = 0, (A 18)

∂φ̂Fn

∂z
= 0 at z = −1, (A 19)
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where η̂Fn (n= 2, 3, . . .) is expressed in terms of the lower-order solution φ̂Fn−1 as

η̂Fn =

[(
v

∂

∂X
− λ1

)
φ̂Fn−1

]
z=0

, (A 20)

and the quantities in the square brackets with subscript z = 0 are evaluated at z =0.
Note that φ̂Fm(m � 0) = 0 and η̂Fm(m � 1) = 0 on the right-hand sides of (A 17) and
(A 18). For n= 1 and 2, the set of equations (A 17)–(A 19) for φ̂Fn is homogeneous
and has a solution independent of z, i.e. φ̂Fn = φ̂Fn(X) (n= 1 and 2). For n= 3 it is
inhomogeneous, and in order to have a solution, its inhomogeneous terms I3 and

J3 must satisfy the solvability condition
∫ 0

−1
I3dz = J3. This condition determines the

dependence of φ̂F1 on X as

φ̂F1 = c1± exp

(
λ1X

v − 1

)
+ c̄1± exp

(
λ1X

v + 1

)
, (A 21)

where c1+ and c̄1+ are undetermined constants for X > 0, and c1− and c̄1− are those
for X < 0. Note that v is larger than unity in (A 21) (see the statement before (2.6)).

A.3. Matching

The far-field solution (φ̂F , η̂F ) in the core region (|X| � 1) is expanded in power

series of X (or αx) as f̂F = (f̂F )0 + αx(∂f̂F /∂X)0 + α2x2(∂2f̂F /∂X2)0/2 + · · · , where
f̂ represents (φ̂, η̂) and the quantities in the parentheses with subscript 0 or ( )0 are
evaluated at X = 0. We then collect the same-order terms of α and obtain a reordered
form (say, (φ̂∗

Fn, η̂
∗
Fn)) of (φ̂Fn, η̂Fn). Matching is carried out by comparing forms of

the two solutions ([φ̂Cn]x→±∞, [η̂Cn]x→±∞) and (φ̂∗
Fn, η̂

∗
Fn) at each n from n= 1.

For n= 1, since φ̂∗
F1 = (φ̂F1)0, matching is accomplished if

[φ̂C1]x→±∞ = c1± + c̄1±, (A 22)

where (A 21) is used. All positive or all negative signs should be chosen in the
double signs in (A 22) (and also in (A 23) below). For n= 2, since φ̂∗

F2 = (φ̂F2)0 +

x(∂φ̂F1/∂X)0, there are two different kinds of terms, i.e. those independent of x and
those proportional to x. The relations among those proportional to x contribute to
determination of c1± and c̄1±. It is convenient to represent them in terms of ûC2

defined by (A 13), i.e.

[ûC2]x→±∞ = λ1(c̄1± − c1±), (A 23)

where (A 20) and (A 21) are used. From the boundary condition (2.12) with (A 21),

c1+ = c̄1+ = 0 for Re [λ1] > 0, (A 24a)

c1− = c̄1− = 0 for Re [λ1] < 0. (A 24b)

The eight undetermined constants [φ̂C1]x→±∞, [ûC2]x→±∞, c1± and c̄1± are determined
by the eight equations (A 14), (A 22), (A 23) and (A 24a) or (A 24b). Substituting the
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result into (A 12), we obtain a cubic equation for λ1, and the solution is

λ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

± ∆

3vA
(1 + 2 cos θ), ± ∆

3vA

(
1 + 2 cos

(
θ − 2

3
π

))

for ∆ < −3v

(
A2E

4

)1/3

, (A 25a)

±
[

∆

3vA
− 1

2

(
B +

∆2

9v2A2B

)]
±

√
3 i

2

(
B − ∆2

9v2A2B

)

for ∆ > −3v

(
A2E

4

)1/3

, (A 25b)

where any signs can be chosen in the double signs, and

A = −dΩ

dv

dM

dv
> 0, θ =

1

3
arctan

(√
−1 − 4∆3/(27v3A2E)

−1 − 2∆3/(27v3A2E)

) (
0 < θ <

π

3

)
,

(A 26a,b)

B =

(
E

2A

)1/3
(

1 +
2∆3

27v3A2E
+

√
1 +

4∆3

27v3A2E

)1/3

. (A 26c)

Here A> 0 is used because this inequality holds at the first three extrema in E (at
h = 0.7807, 0.83028 and 0.83305). The solution (A 25b) indicates that the eigenvalues
with a positive real part are complex conjugate when ∆ > 0 (or dE/dv > 0 for which
h is just below the amplitude of dE/dv = 0; see figure 1), whereas there are the two
following patterns depending on ε when ∆ < 0 (or dE/dv < 0 for which h is just above
the amplitude of dE/dv =0): (i) two positive real eigenvalues appear for 0 < ε < εcr

(see (A 25a)); (ii) complex-conjugate eigenvalues with a positive real part appear for
ε > εcr (see (A 25b)), where εcr =(2/A

√
E)(|dE/dv|/3v)3/2.

Up to now, we have considered the case of |dE/dv| =O(α)(= O(ε2/3)). The solution
(A 25) is, however, valid for |dE/dv| � α and α � |dE/dv| � 1. For |dE/dv| � α

(or |∆| � 1), λ1 at the leading order is simply given by (A 25b) with ∆ =0. For
α � |dE/dv| � 1 (or |∆| 
 1), (A 25) with |∆| 
 1 gives λ1 = ± ∆/vA + · · · and
±(

√
−vE/∆ + v2EA/2∆2 + · · · ) for ∆ < 0, and λ1 = ± (i

√
vE/∆ ± v2EA/2∆2 + · · · )

for ∆ > 0. These results are valid for α � |dE/dv| � 1 because the same results are
derived from substitution of (A 1) into the solution λ valid for dE/dv = O(1) (given
by (3.54) of Kataoka 2006a, and (3.18) and (3.22) with ρ =0 of Kataoka 2008).

Appendix B. Asymptotic analysis for small ε when |dv/dh| � 1

We seek an asymptotic solution of (2.8)–(2.12) for small ε when |dv/dh| = O(ε2),
i.e.

dv

dh
= ε2V, (B 1)

where V is a given constant of the order of unity (the case where |dv/dh| is of a
different order of small magnitude from O(ε2) is discussed in the last paragraph of
this Appendix). At the leading order in ε, equations (2.8)–(2.11) have the following
leading-order solution with λ=0:

φ̂ = φ̂C0 ≡ ∂Φs

∂x
+ β

∂Φs

∂h
, η̂ = η̂C0 ≡ dηs

dx
+ β

∂ηs

∂h
, λ = 0, (B 2)
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where β is an undetermined constant, and ∂Φs/∂h and ∂ηs/∂h represent the derivatives
of Φs and ηs with respect to h for fixed x and z. The λ will have non-zero small value
at the higher orders, and it is assumed to be O(ε2), i.e.

λ = ε2λ2, (B 3)

where λ2 is an unknown constant of the order of unity.

B.1. Core solution

We look for a solution of (2.8)–(2.11) with a moderate variation in x and z

(∂φ̂/∂x = O(φ̂), ∂φ̂/∂z = O(φ̂) and dη̂/dx = O(η̂)), in the following power series of
ε2:

φ̂C = φ̂C0 + ε2φ̂C2 + ε4φ̂C4 + · · · , η̂C = η̂C0 + ε2η̂C2 + ε4η̂C4 + · · · , (B 4a,b)

where the leading-order solution (φ̂C0, η̂C0) is given by (B 2).
Substituting (B 3) and (B 4) into (2.8)–(2.11) and arranging the same-order terms

in ε2, we obtain a series of sets of equations for (φ̂Cn, η̂Cn) (n= 2, 4, . . . ). For n= 2,
it becomes

∂2φ̂C2

∂x2
+

∂2φ̂C2

∂z2
= F2 ≡ ∂Φs

∂x
+ β

∂Φs

∂h
, (B 5)

LK [φ̂C2, η̂C2] = G2 ≡ −λ2

(
dηs

dx
+ β

∂ηs

∂h

)
− βV

dηs

dx
at z = ηs, (B 6)

LD[φ̂C2, η̂C2] = H2 ≡ −λ2

(
∂Φs

∂x
+ β

∂Φs

∂h

)
− βV

∂Φs

∂x
at z = ηs, (B 7)

∂φ̂C2

∂z
= 0 at z = −1, (B 8)

where LK and LD are defined by (2.13). For this set of inhomogeneous equations
(B 5)–(B 8) to have a solution that does not diverge exponentially as x → ±∞, its
inhomogeneous terms F2, G2 and H2 on the right-hand sides of (B 5)–(B 7) must
satisfy the solvability conditions:

∫ ∞

−∞
dx

∫ ηs

−1

∂Φs

∂x
F2dz +

∫ ∞

−∞

[
∂Φs

∂x
G2 − dηs

dx
H2

]
z=ηs

dx = 0, (B 9a)

∫ ∞

−∞
dx

∫ ηs

−1

∂Φs

∂h
F2dz +

∫ ∞

−∞

[
∂Φs

∂h
G2 − ∂ηs

∂h
H2

]
z=ηs

dx

=

[
∂Φs

∂h

(
∂φ̂C2

∂x
− vη̂C2

)]
x→∞

−
[

∂Φs

∂h

(
∂φ̂C2

∂x
− vη̂C2

)]
x→−∞

, (B 9b)

where the quantities in the square brackets with subscript z = ηs or x → −∞ (or ∞)
are evaluated at z = ηs or x → −∞ (or ∞), respectively. Noting that Φs(x, z)−Φs(0, z)
is odd in x (see the statement after (2.6)) and Φs(0, z) = (Φs(−∞, z) + Φs(∞, z))/2, we
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find that (B 9) become

−λ2β

v

dE

dh
+ E = −vM

2
([φ̂C0]x→−∞ + [φ̂C0]x→∞), (B 10a)

β2V

v

dE

dh
+ E + β2

∫ ∞

−∞
dx

∫ ηs

−1

(
∂Φs

∂h
−

[
∂Φs

∂h

]
x→−∞

)(
∂Φs

∂h
−

[
∂Φs

∂h

]
x→∞

)
dz

= −
[
φ̂C0

(
ûC2 +

M

2
φ̂C0 + vM

)]
x→−∞

+

[
φ̂C0

(
ûC2 − M

2
φ̂C0 − vM

)]
x→∞

,

(B 10b)

where E and M are defined by (2.15) and (2.18), and

ûC2 =
∂φ̂C2

∂x
− vη̂C2 − xφ̂C0. (B 11)

Here [φ̂C0]x→±∞ and [ûC2]x→±∞ appearing on the right-hand sides of (B 10) satisfy the
relations

[φ̂C0]x→−∞ = [φ̂C0]x→∞ + β
dΩ

dh
, (B 12a)[

ûC2 +
M

2
φ̂C0

]
x→−∞

=

[
ûC2 − M

2
φ̂C0

]
x→∞

− vM + λ2β
dM

dh
, (B 12b)

where Ω is defined by (2.18).

B.2. Far-field solution

Introducing two shrunken coordinates with respect to x,

X = εx, X2 = ε2x, (B 13a,b)

we look for a solution of (2.8)–(2.11) with a moderate variation in X, X2 and z in the
following power series of ε:

φ̂F = φ̂F0(X, X2, z) + εφ̂F1(X, X2, z) + · · · , η̂F = εη̂F1(X, X2) + ε2η̂F2(X, X2) + · · · .

(B 14a,b)
Substituting (B 13) and (B 14) into (2.8)–(2.11), and arranging the same-order terms
in ε, we obtain a series of sets of equations for φ̂Fn (n = 0, 1, 2, . . . ):

∂2φ̂Fn

∂z2
= In ≡ φ̂Fn−2 − ∂2φ̂Fn−2

∂X2
− 2

∂2φ̂Fn−3

∂X∂X2

− ∂2φ̂Fn−4

∂X2
2

, (B 15)

∂φ̂Fn

∂z
= Jn ≡ −v

∂η̂Fn−1

∂X
+

(
λ2 − v

∂

∂X2

)
η̂Fn−2 at z = 0, (B 16)

∂φ̂Fn

∂z
= 0 at z = −1, (B 17)

where η̂Fn (n= 1, 2, . . .) is expressed in terms of the lower-order solutions φ̂Fn−1 and
φ̂Fn−2 as

η̂Fn =

[
v
∂φ̂Fn−1

∂X
+

(
v

∂

∂X2

− λ2

)
φ̂Fn−2

]
z=0

, (B 18)

and the quantities in the square brackets with subscript z = 0 are evaluated at z = 0.
Note that φ̂Fm(m � −1) = 0 and η̂Fm(m � 0) = 0 on the right-hand sides of (B 15),
(B 16), and (B 18). For n= 0 and 1, the set of equations (B 15)–(B 17) is homogeneous
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and has a solution independent of z, i.e. φ̂Fn = φ̂Fn(X, X2) (n= 0 and 1). For n � 2, it
is inhomogeneous, and in order to have a solution, its inhomogeneous terms In and

Jn must satisfy the solvability condition
∫ 0

−1
Indz = Jn. This condition for n= 2 and

that for n= 3 determine the dependence of φ̂F0 on X and X2 as

φ̂F0 =

[
c0± exp

(
iX√

v2 − 1

)
+ c̄0± exp

(
−iX√
v2 − 1

)]
exp

(
vλ2

v2 − 1
X2

)
, (B 19)

and the above conditions for n= 3 and 4 determine the dependence of φ̂F1 on X and
X2 as

φ̂F1 =

{[
c1± − ic0±

2(v2 − 1)3/2

(
λ2

2 +
v4

3(v2 − 1)

)
X2

]
exp

(
iX√

v2 − 1

)

+

[
c̄1± +

ic̄0±

2(v2 − 1)3/2

(
λ2

2 +
v4

3(v2 − 1)

)
X2

]
exp

(
−iX√
v2 − 1

)}
exp

(
vλ2

v2 − 1
X2

)
,

(B 20)

where c0+, c̄0+, c1+ and c̄1+ are undetermined constants for X, X2 > 0 and c0−, c̄0−,
c1− and c̄1− are those for X, X2 < 0. In deriving (B 20), the solution φ̂F2 of (B 15)–
(B 17) for n= 2 is used.

B.3. Matching

The far-field solution (φ̂F , η̂F ) in the core region (|X| � 1, |X2| � 1) being expanded
in power series of X and X2 (or εx and ε2x), and the same-order terms of ε being
collected, we obtain a reordered form (say, (φ̂∗

Fn, η̂
∗
Fn)) of (φ̂Fn, η̂Fn). Matching is

carried out by comparing forms of the two solutions ([φ̂Cn]x→±∞, [η̂Cn]x→±∞) and

(φ̂∗
Fn, η̂

∗
Fn) at each n from n= 0.

For n= 0, since φ̂∗
F0 = (φ̂F0)0 (the quantities in the parentheses with subscript 0 are

evaluated at X = X2 = 0), matching is accomplished if

[φ̂C0]x→±∞ = c0± + c̄0±, (B 21)

where (B 19) is used. All positive or all negative signs should be chosen in the double
signs in (B 21) (and also in (B 22) and (B 23) below). For n= 1, since φ̂∗

F1 = (φ̂F1)0 +

x(∂φ̂F0/∂X)0, matching conditions are obtained individually from two different kinds
of terms, those independent of x and those proportional to x, as

0 = c1± + c̄1±, 0 = c0± − c̄0±. (B 22a,b)

Here φ̂C1 = 0, (B 19) and (B 20) are used. For n= 2, since φ̂∗
F2 = (φ̂F2)0 + x(∂φ̂F1/∂X +

∂φ̂F0/∂X2)0 + (x2/2)(∂2φ̂F0/∂X2)0, there are three different kinds of terms. The
relations among those proportional to x contribute to determination of the unknowns
c1± and c̄1±. In view of (B 10b), it is convenient to represent them in terms of ûC2

defined by (B 11) as

[ûC2]x→±∞ = i
√

v2 − 1
(
−c1± + c̄1±

)
, (B 23)

where (B 18)–(B 20) are used. From the boundary condition (2.12) with (B 19) and
(B 20),

c0+ = c1+ = 0 for Re [λ2] > 0, (B 24a)

c0− = c1− = 0 for Re [λ2] < 0, (B 24b)
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where c̄0+ = c̄1+ = 0 in (B 24a) and c̄0− = c̄1− = 0 in (B 24b) are already included in
(B 22). The 12 undetermined constants [φ̂C0]x→±∞, [ûC2]x→±∞, c0±, c̄0±, c1±, and c̄1± are
determined by the 12 equations (B 12), (B 21)–(B 23) and (B 24a) or (B 24b). Substi-
tuting the result into (B 10), we obtain a quadratic equation for λ2, and the solution is

λ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±
(√

− vEV

dE/dh
+ Q2 − R − Q

)
for

V

dE/dh
< − R

vE
(< 0), (B 25a)

±
(√

− vEV

dE/dh
+ Q2 − R ± Q

)

for − R

vE
<

V

dE/dh
<

Q2 − R

vE
(< 0), (B 25b)

±
(

i

√
vEV

dE/dh
+ R − Q2 ± Q

)
for

V

dE/dh
>

Q2 − R

vE
(< 0), (B 25c)

where Q is defined by (2.17) and

R =
v2

(dE/dh)2

{
v2M2

4

(
dΩ

dh

)2

+ E

∫ ∞

−∞
dx

∫ ηs

−1

(
∂Φs

∂h
−

[
∂Φs

∂h

]
x→−∞

)

×
(

∂Φs

∂h
−

[
∂Φs

∂h

]
x→∞

)
dz

}
. (B 26)

Inequalities Q < 0 and Q2 <R are used in (B 25) since they hold at the first three
extrema in v (at h = 0.79591, 0.8309762 and 0.83308). Any signs can be chosen in
the double signs in (B 25). The solution (B 25c) indicates that the eigenvalues with a
positive real part are complex conjugate when V/(dE/dh) > 0 (or dE/dv > 0 for which
h is just above the amplitude of dv/dh = 0; see figure 1), whereas there are the three
following patterns depending on ε when V/(dE/dh) < 0 (or dE/dv < 0 for which h is
just below the amplitude of dv/dh = 0): (i) only a single positive real eigenvalue exists
for ε < εcr1 (see (B 25a)); (ii) two positive real eigenvalues appear for εcr1 <ε <εcr2

(see (B 25b)); (iii) complex-conjugate eigenvalues with a positive real part appear for
ε > εcr2 (see (B 25c)), where εcr1 =

√
vE/|RdE/dv| and εcr2 =

√
vE/|(R − Q2)dE/dv|.

Up to now, we have considered the case of |dv/dh| =O(ε2). The solution (B 25) is,
however, valid for |dv/dh| � ε2 and ε2 � |dv/dh| � 1. For |dv/dh| � ε2 (or |V | � 1),
λ2 at the leading order is simply given by (B 25c) with V =0. For ε2 � |dv/dh| � 1
(or |V | 
 1), (B 25a,c) with |V | 
 1 gives λ2 = ± (

√
−vEV/(dE/dh) − Q + · · · ) for

V/(dE/dh) < 0, and λ2 = ± (i
√

vEV/(dE/dh) ± Q + · · · ) for V/(dE/dh) > 0. These
results are valid for ε2 � |dv/dh| � 1 because the same results are derived from
substitution of (B 1) into the solution λ valid for dv/dh = O(1) (given by (3.18) and
(3.22) with ρ = 0 of Kataoka 2008).
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